arxim, bases de données

sommaire

arxim, bases de données	3
bases de données thermodynamiques	3
espèces dans leur état de référence	
modèles de mélange	
bases de données cinétiques	3
etour sur le ΔG d'une réaction	4
ex: dissolution de la calcite : CaCO3 = Ca+2 + CO3-2	4
e ΔG° d'une réaction	
pases de données géosciences	
ex: EQ3/6, PHREEQC, CHESS/CTDP, GWB, MINTEQ,	
ex: Robie-Waldbaum, TWEEQU, THERMOCALC,	
appel occasionnel aux EoS gaz-liquides (cubiques, SAFT, UNIQUAC,) venant du génie	
chimique (pétrole,)	
pase de données logK "analytique", exemple PHREEQC	7
'HSV" vs "LogK"	
"HSV"	
"LogK"	8
arxim, bloc ELEMENTS, SPECIES	
arxim, base logK discrète: bloc TP.TABLE	
dans le cas d'une base logK "discrète", un bloc en plus: TP.TABLE	
→ renseigne pour quels (T,P) sont tabulés les logK des espèces	
arxim, bases disponibles	
bases logK "discrètes"	

	arxim_dtb - 2
bases HSV	11
bases logK "analytiques" (en cours)	11
arxim, construire sa base de données, exemple	
sommaire	

arxim, bases de données

bases de données thermodynamiques

espèces dans leur état de référence

- \rightarrow calcul des ΔG° (ou logK) des réactions entre les espèces deux formats possibles:
 - → logK
 - → HSV

modèles de mélange

- → calcul des relations activité / composition dans les mélanges
- solution aqueuse → implémenté "en dur"
- mélanges gazeux et solutions solides → base de donnée

bases de données cinétiques

paramètres de la cinétique de précipitation / dissolution d'un minéral dans une solution aqueuse

→ nécessaire seulement pour les simulations dynamiques

retour sur le ΔG d'une réaction

équilibre d'un système chimique ⇔ ΔG=0, ∀ réaction possible entre espèces du système

ex: dissolution de la calcite : CaCO3 = Ca+2 + CO3-2 ΔG , différence de potentiel ("réduit"), de la réaction, $= \mu(Ca+2) - \mu(CO3-2) - \mu(Calcite)$ pour chaque espèce i, $\mu_i = g^*_i + RT.ln(act_i, \phi)$

- g°i est le potentiel de l'espèce i à son état de référence (i.e. son énergie libre molaire de formation)
- ai est l'activité de l'espèce dans sa phase

$$\begin{split} &\Delta\,G\!=\!g_{\text{Ca}^{+2}}^{0}\!+\!g_{\text{CO}_{3}^{-2}}^{0}\!-\!g_{\text{Calcite}}^{0}\\ +\!RT\big[\ln(a_{\text{Ca}^{+2}})\!+\!\ln(a_{\text{CO}_{3}^{-2}})\!-\!\ln(a_{\text{Calcite}})\big] \end{split}$$

le ΔG° d'une réaction

$$\begin{split} &\Delta G \!=\! g_{\text{Ca}^{+2}}^0 \! +\! g_{\text{CO}_3^{-2}}^0 \! -\! g_{\text{Calcite}}^0 \! +\! \text{RT}[\ln(a_{\text{Ca}^{+2}}) \! +\! \ln(a_{\text{CO}_3^{-2}}) \! -\! \ln(a_{\text{Calcite}})] \\ &\Rightarrow \Delta G \!=\! g_{\text{Ca}^{+2}}^0 \! +\! g_{\text{CO}_3^{-2}}^0 \! -\! g_{\text{Calcite}}^0 \! +\! \text{RT.ln}(\frac{a_{\text{Ca}^{+2}} a_{\text{CO}_3^{-2}}}{a_{\text{Calcite}}}) \\ &\text{ou} \\ &\Delta G \!=\! \Delta G^0 \! +\! \text{RT.ln}Q \\ &\text{avec} \quad \Delta G^0 \! =\! g_{\text{Ca}^{+2}}^0 \! +\! g_{\text{CO}_3^{-2}}^0 \! -\! g_{\text{Calcite}}^0 \; , \quad Q \! =\! \frac{a_{\text{Ca}^{+2}} a_{\text{CO}_3^{-2}}}{a_{\text{Calcite}}} \\ &\text{soit, avec} \quad K \! =\! e^{\frac{-\Delta G^\circ}{RT}} \; , \quad \frac{\Delta G}{RT} \! =\! \ln Q \! -\! \ln K \! =\! \ln \frac{Q}{K} \end{split}$$

calcul de $\Delta G^{\circ}(T,P) \rightarrow r\hat{o}$ le de la base de données: calcul des $a_i \rightarrow mod\hat{e}$ les de mélange (*incl.* sol° aqueuse):

bases de données géosciences

deux types de bases en usage dans les géosciences

- hydro(géo)chimie, subsurface, ciments, ...: "logK" ensemble cohérent de ΔG° de réactions entre espèces, pour quelques points ou le long d'une courbe (T,P) ex: EQ3/6, PHREEQC, CHESS/CTDP, GWB, MINTEQ, ...
- métamorphisme, magmatisme, gîtologie ...: "HSV" ex: Robie-Waldbaum, TWEEQU, THERMOCALC,... pour chaque minéral ou gaz, jeu complet de paramètres de son équation d'état permettant de calculer, à (T,P) arbitraire, G, ainsi que H, S, V, Cp
- approche "HSV" des espèces aqueuses → **SUPCRT**

appel occasionnel aux EoS gaz-liquides (cubiques, SAFT, UNIQUAC, ...) venant du génie chimique (pétrole, ...)

base de données logK "analytique", exemple PHREEQC

extrait du fichier phreeqc.dat

```
<< "espèces primaires"</pre>
SOLUTION_MASTER_SPECIES
          -1.
                      1.008
 H2O 0.0
                      16.00
Ca Ca+2 0.0 Ca 40.08
C C03-2 2.0 HC03 12.01
SOLUTION SPECIES
H+=H+
    log_k 0.000
Ca+2 = Ca+2
    H2O = OH- + H+ << OH- "esp'secondaire"
   log k -14.000 << à 25°C/1bar
    -analytic -283.971 -0.05069 13323.0 102.24 -11196
CO3-2 + H+ = HCO3- << CO3-2 "esp'secondaire"
    log_k -10.329
```

"HSV" vs "LogK"

```
"HSV"
application plus large en domaine T,P
construites par optimisation → forte cohérence interne
mais ...
concernent surtout les minéraux du métamorphisme
→ absence de minéraux basse température (gypse, CSH, ...)
"LogK"
très riches, nombreux minéraux
mais ...
domaine de pression réduit: influence de la pression ?
cohérence interne?
```

arxim, bloc ELEMENTS, SPECIES

```
bloc ELEMENTS (pour tout type de base thermo)
 ELEMENTS
   0 0.0159995 -2 -2 102.575
   H 0.001008 1 1 65.34
   CA 0.040078 2 2 41.59
    . . / . .
 END ELEMENTS
bloc SPECIES (cas d'une base HSV)
  SPECIES MIN.THR
 MINERAL
  ALBITE-LOW NA(1)AL(1)SI(3)O(8)
  & ST 0.00 -3935100.10
                                              10.043
                                207.4430
  & C1 393.63574 -2415.498 -7892826.000 1070636032.0
  & V1 2.63072032 0.00032407 -0.19446932
                                           0.00048611
  END SPECIES
```

arxim, base logK discrète: bloc TP.TABLE

```
dans le cas d'une base logK "discrète", un bloc en plus: TP.TABLE
```

```
TP.TABLE
TdgC 0.010 25.0 60.0 100.0 150.0 200.0 ../..
Pbar 1.013 1.013 1.013 1.013 4.757 15.73 ../..
END TP.TABLE
```

→ renseigne pour quels (T,P) sont tabulés les logK des espèces

```
      SPECIES
      !T=
      0.01
      25.0
      60.0
      ../..

      H20
      0(1)H(2)
      0.00
      45.027019
      41.544996
      37.587590
      ../..

      AL+3
      AL(1)+(3)
      3.42
      94.016197
      84.741483
      74.018584
      ../..

      END
      SPECIES
```

```
série (T,P) à la EQ3/6
```

arxim, bases disponibles

bases logK "discrètes"

- tabulées EQ3/6 -
 - eq36_hkf.dtb ← calculé à partir de obigt

bases HSV

bases HKF

- obigt_aqu.dtb ← www.predcent.org
- obigt_min.dtb idem
- obigt gas.dtb idem

bases métamorphisme (site theriak-domino)

- thr thcalc db55 min.dtb ← Holland-Powell (Thermocalc)
- thr_twq_dec06_min.dtb ← Berman (Tweequ)

bases logK "analytiques" (en cours)

$$LogK(T) = A + B.T + C.T^{-1} + D.LogT + E.T^{-2}$$

arxim, construire sa base de données, exemple

pour construire un run arxim utilisant les logK d'une publication

```
TP.TABLE
TdgC 25
Pbar 1.00
END
```

définir un jeu d'espèces primaires

= jeu d'espèces linéairement indépendantes permettant de générer l'ensemble des espèces du problème

pour toutes les espèces primaires, logK=0

```
      SPECIES LOGK
      !size
      logk

      AQU ref H20
      0.0
      0.00

      AQU ref H+
      H+
      9.0
      0.00

      AQU ref Ca+2
      Ca+2
      0.0
      0.00

      AQU ref S04-2
      S04-2
      0.0
      0.00
```

pour les autres espèces,

inscrire le logK de la **réaction de formation** à partir des espèces de base

```
MIN ref GYPSE CaS04(H20)2 2700 10.00 ../..
```

!	حالجات	10
arxim	atb ·	- I3

-